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Abstract

Mathematical optimization models can improve decision
making in a wide variety of industrial applications, including
process control in manufacturing and materials processing.
However, creating an optimization model requires rare opti-
mization and domain expertise and a significant amount of
time, thereby limiting the widespread use of this technology.
One way to overcome this is by utilizing historical data to
learn the relevant parts of the optimization model. However,
as historical decisions may be suboptimal, the data used for
training may not be representative of an optimal operating re-
gion for the control set points, resulting in inaccuracies very
different from the ones in traditional machine learning set-
tings, and which pose significant challenges in learning good
optimization models.
In this work, we present a formal approach for addressing
such challenges in the automated generation of optimization
models, in order to improve the quality of the solutions pro-
duced by the generated models. Our approach consists of: a)
a formal definition of the measure of quality of the generated
model; b) a Gaussian Process approach, with a strong theoret-
ical basis which, under some assumptions, provides an accu-
rate quality estimate of the generated models’ quality, backed
by extensive empirical analysis; and c) methods to augment
the generated optimization model with additional constraints
so as to obtain high quality (as defined by our measure) opti-
mization models.

1 Introduction
Mathematical optimization can provide decision support to a
variety of real world problems across several application do-
mains. Creating an optimization model requires both mod-
eling the constraints which govern the system, as well as
the objective function to be optimized. Currently, creating
a mathematical optimization model requires optimization
modeling expertise, which is quite rare, as well as signifi-
cant time, typically measured in months. This severely limits
the application of mathematical optimization and the bene-
fits it currently provides. Therefore, to realize the true busi-
ness benefits of mathematical optimization, there is a need
to enable non-experts to create such models in an automated
manner, in a much shorter amount of time.
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1.1 Problem Definition
Consider a complex production or manufacturing system
such as oil and gas, mining, or food processing. In such
problems, optimization decision variables include control
variables, for which optimal set points are to be identified.
Traditionally, first-principle models based on thermodynam-
ics, heat and mass transfer, chemical kinetics etc. are used
to model each process in such systems. Those equations
would then need to be translated into a formulation that
can be efficiently solved by mathematical solvers. This ap-
proach requires significant time, skills, and domain under-
standing. With the introduction of Industry 4.0, there is a
widespread availability of fine-grained IoT sensor data that
captures plant behavior. This allows the utilization of a data-
driven approach towards process control (Phan et al. 2021),
which aims to use machine learning techniques to learn and
represent relationships between inputs and outputs for each
process. The regression-based relationships can then be au-
tomatically converted into an optimization model to obtain
temporal recommendations on optimal set points (Subra-
manian et al. 2019). This two-stage prediction-optimization
based approach is an example of data driven automated op-
timization modeling.

To formally define our problem setup, we assume there is
a system which can be described through a set of functions
f(x, p), gk(x, p), k ∈ [K] = {1, . . . ,K} with x ∈ X ⊂
Rdx as the set of decision variables and p ∈ P ⊂ Rdp as
uncontrollable inputs exogenously provided (with dx and dp
being the dimensions of the x and p vectors respectively).
Given an input p ∈ P , the goal is to find the optimal decision
x∗(p) such that:

x∗(p) = arg min
x
f(x, p) subject to x ∈ X ∩ Ω(p)

where Ω(p) = {x ∈ Rdx : gk(x, p) ≤ 0,∀k ∈ [K]}.
(1)

However, we do not have access to this model. Rather,
we have access to historical data from which we wish to
learn this model automatically. Such historical data for au-
tomated optimization model derivations needs to contain ex-
plicit (often suboptimal) choices made by decision makers,
and which therefore cannot be naturally modeled by a prob-
ability distribution. As a result, such data may not cover, or
even be representative of, all possible decisions or set points.
In a traditional prediction-optimization approach regression



models trained on such historical datasets may therefore er-
roneously generalize to decision domains not covered in the
data. When such models are used within a set point opti-
mization model, poor decisions may be produced. There-
fore, in this work, we provide an approach for addressing
optimization solution quality. We formally define the qual-
ity of the generated model, provide a data-driven method
to estimate the model’s quality, and describe approaches for
generating models that meet the quality requirement.

1.2 Contributions
We summarize our main contributions as follows. Firstly, in
§2, we provide a formal definition to ensure that the gener-
ated solution is, with a high enough probability, an improve-
ment over the decisions used to generate the data. Secondly,
in §3, we propose a Gaussian Process based approach that
enables to measure the probability that the generated model
provides an improving solution. Lastly, to deal with uncer-
tainty for prediction models, in §4, we introduce two new
notions: data sufficiency and model fidelity, and then lever-
age them to form additional constraints for the optimization
model to improve the original solution. Our main goal is to
provide a theoretical foundation and tools, deferring a com-
prehensive end-to-end solution to future work.

2 Defining Optimization Solution Quality
In this paper, we assume that the true model of the system
defined by {f,Ω}, as specified in Equation (1), is not known.
Rather, we have a set of historical data D so that each di ∈
D is composed of a tuple di = 〈xi, pi, f(xi, pi)〉 such that
xi ∈ X ∩ Ω(pi). Moreover, p is generated i.i.d. from some
distribution. From this data, we need to learn an optimization
model 1. {f̂ , Ω̂}. Given a vector pair p drawn according to
the predetermined distribution, we can then use this model
to find x̂?(p) = arg minx f̂(x, p) subject to x ∈ X ∩ Ω̂(p).

The first condition for x̂? to be a good solution is that it
is feasible with a high enough probability, induced by distri-
butions of p and D, i.e.:

Pr(x̂?(p) ∈ Ω(p)) ≥ (1− δ1) (2)

We also need to ensure that x̂? provides a sufficiently good
function value. One way to define this is that the solution
found by the approximate model {f̂ , Ω̂} ε-approximates the
optimal solution of the true system with a high probability.
However, this is extremely difficult to guarantee given the
limited data and the fact that the above does not assume any
prior knowledge about the distribution of x. Therefore, we
will define a good solution by how much it improves over the
existing decision policy, which would capture for example,
the way that currently such decisions are made. Assuming
that the decisions are sampled from a distribution H|p con-
ditioned on the uncontrollable p, let XH|p ∼ H|p. Then we
can define the following condition:

Pr(f(XH|p , p)− f(x̂?(p), p) ≥ ε) ≥ (1− δ2) (3)

1As mentioned previously, xi may not be the optimal decision
for pi. For example, it could be a decision made on best practices
or rules of thumb

which specifies that x̂?(p) improves upon H|p by ε with a
high enough probability2.

Equations (2) and (3) formalize the desired properties of
optimization solution quality using a probabilistic approach.
These equations motivate the development of techniques to
quantify the desired probabilities. In the next section, we
present a novel Bayesian approach using Gaussian processes
to quantify these probabilities.

3 Gaussian Process for Quality Estimate
Let us consider a simpler version of the optimization prob-
lem discussed in Section 2. Consider X ,Ω ⊆ Rdx in the
space of decision variables, P ⊆ Rdp in the space of uncon-
trolled variables, and an objective target f : Ω×P → R. We
will assume Ω is closed and bounded. Given some p ∈ P ,
we wish to solve the optimisation problem

x?(p) = argminx∈X∩Ωf(x, p). (4)

In this formulation, the feasibility region Ω is independent
of p and X is known. In applications, Ω is defined through
a finite set of inequalities {gk(x) ≤ 0}, while the set X may
be discrete (e.g., a lattice in integer programming). In other
words, in this setup, X imposes the (possible) discretization
of the optimisation problem.

Assume we do not have direct knowledge of either f or
Ω. Instead, we are given Ω̂ ⊆ Rd and f̂ : Ω̂×P → R. Given
p ∈ P , we can solve the ersatz optimization problem

x̂?(p) = argminx∈X∩Ω̂f̂(x, p). (5)

Our goal is to find a way to evaluate the quality of x̂?(p) as a
substitute for x?(p). We wish to introduce a metric by which
to assess x̂?(p), independent of any means of producing Ω̂

and f̂ or solving the optimization problem (5). Instead, of
trying to assess x̂?(p) against x?(p) of which we have no
direct knowledge, we can consider x̂?(p) relative to some
x0 ∈ Rdx appropriate for p, for instance, the current best
practice or policy. Concretely, we would like to estimate the
probability that the proposed optimum x̂?(p) improves upon
a known policy x0 associated with p. We seek an estimate of
the probability of improvement of x̂?(p) relative to x0 at p,

Pr[f(x̂?(p), p) < f(x0, p)] (6)

To estimate the probability of improvement (6), we can view
both f and Ω stochastically.3 In fact, restricting Ω to subsets
defined via a finite set of (affine, quadratic, etc.) inequali-
ties {gk(x) ≤ 0} provides us with a well-defined notion of
stochasticity for Ω.4 From now on, we will assume {gk} to
be affine. Hence, all feasibility regions Ω will be assumed
convex.5 By limiting ourselves to affine inequalities and fix-
ing the number of inequalities, 1 ≤ k ≤ K, we can view

2Alternative formulations of relative improvements are also
possible, but this is the one we focus on in this work

3A possible discretization via X may break stochasticity, there-
fore, we will not assume stochasticity for argminX∩Ωf(·, p).

4This requires an upper bound on the number of inequalities.
5Introducing stochasticity both for f and Ω extends the no-

tion of a stochastic optimization problem in which Ω is assumed



Ω as a random variable defined over M(dx+1)×K(R); each
set of affine inequalities {gk(x) ≤ 0} can be succinctly ex-
pressed as Ax̄ ≤ 0, where x̄ = (x, 1) ∈ Rdx+1 is the ho-
mogenization of x and A ∈ M(dx+1)×K(R) is a matrix of
dimension (dx + 1)×K.

Gaussian processes (GPs) provide us with the mathemat-
ical machinery to view f stochastically. A Gaussian pro-
cess governs the stochastic properties of a random func-
tion in the same way that a Gaussian probability distribu-
tion governs the properties of a random variable (Williams
and Rasmussen 2006). A Gaussian process on f establishes
f(x, p) ∼ N (µ(x, p), σ2(x, p)) for every (x, p) ∈ Rdx ×
Rdp . Considered as two normally distributed random vari-
ables, f(x̂?, p) and f(x0, p), the probability of improvement
(6) immediately follows.

Assume we have a prior Ω ∼ O. For example, we
may assume a fixed number K of affine inequalities defin-
ing the feasibility region, so that O is a distribution over
M(dx+1)×K(R). Starting from data D = {〈xi, pi, yi〉}, we
establish a joint posterior GPf,Ω that ties f to Ω, so that

GPf,Ω(Ω = Ω̂) ≡ GPf | D∩Ω̂ (7)

its right-hand side being the GP posterior established on f
given D restricted to Ω̂. By abuse of notation, we use D∩ Ω̂

to mean D restricted to Ω̂.
To calculate the probability of improvement (6), we use

GPf,Ω and marginalize over Ω as a way to capture the un-
certainty on Ω introduced throughO. The right-hand side of
(7) suggests defining m : Ω̂ 7→ D ∩ Ω̂ ∈ 2D that maps a
feasibility region Ω̂ into a subset of D. The map m induces
a finite partition on the space of Ω’s.6 When marginalizing
over Ω, m allows us to translate the integral over Ω into a fi-
nite sum. Hence, GPf,Ω determines the marginalized prob-
ability of improvement

Pr[f(x̂?, p) < f(x0, p)] =∑
D′⊆D

ωD′PrGPf|D′ [f(x̂?, p) < f(x0, p)] (8)

with
ωD′ =

∫
m−1(D′)

dΩ (9)

where the measure dΩ is strictly determined by O.
There is no reason to assume monotonicity ωD′ ≤ ωD′′ ,

for D′ ⊂ D′′ or ωD = 1. When the data D is contained in Ω
with probability 1, i.e., PrO[D ⊆ Ω] = 1, then ωD′ = 0 for
any D′ ( D and ωD = 1. In that case, (8) reduces to

Pr[f(x̂?, p) < f(x0, p)] =

PrGPf|D [f(x̂?, p) < f(x0, p)] (10)

known. As an extension of a stochastic optimization problem, (4)
assumes the form x? = argminX∩E[Ω|x,p]E [f |x,p] (·, p). When
Ω is known, there is an equivalence of linear optimization prob-
lems on X ∩Ω and Conv (X ∩ Ω), allowing us to remove X from
the formulation. However, when Ω is randomized, we can no longer
do so.

6The space of all closed, bounded, convex domains Ω defined
through sets of affine inequalities {gk(x) ≤ 0}

By definition (9), ωD′ is negligible whenever it is improba-
ble that a likely Ω will intersect D at D′. In general, there is
no reason to assume all data points are feasible.

To better understand the probability of improvement de-
fined in (8), let us examine its relation to

r1(Ω̂) = |Ω̂ ∩ D|/|D| (11)

r2(Ω̂) = |Conv
(

Ω̂ ∩ D
)
|/|Ω̂| (12)

where | · | designates cardinality in (11) and volume in (12).
r1(Ω̂) measures how much of D is covered by Ω̂, while
r2(Ω̂) measures how much data-less volume Ω̂ contains.7

Consider the case where ωD is close to 1, that is, dΩ is
concentrated around feasibility regions that cover most of
D. In this case, ωD′ is commensurable with |D′|/|D|: ωD′ is
low whenever |D′|/|D| is low, and vice versa. On the other
hand, whenever ωD is close to 0, it is highly unlikely that all
data points are feasible. Here, the relation is reverse: ωD′ is
low whenever |D′|/|D| is high, and vice versa. The contri-
bution of D′ to the finite sum in (8) is dampened when the
probability of improvement on the right-hand side is calcu-
lated based on infeasible data points. Thus, GPf,Ω captures
r1(·) through ω, either directly or inversely, depending on
O.

As we move away from the data, the GP posterior is pre-
dominantly determined by the prior on f . Consequently, a
prior centered around the empirical mean of f inD produces
a GP posterior that will never locate an optimal solution far
away from D. Hence, there will be little chance of improve-
ment for x̂?(p) located in data-less regions: the probability
on the right-hand side of (8) will necessarily be low.8

Choosing to establish a GP posterior on f irrespective of
O does not fully address ri(·). As stated in (10), it is equiva-
lent to calculating the probability of improvement assuming
that PrO[D ⊆ Ω] ≈ 1.

The probability of improvement (8) is a strong metric with
which to assess prediction-optimization schemes, namely,
any scheme that, given data D associated with an objec-
tive target and given knowledge, i.e., constraints, produces
an optimal solution x̂?(p) as in (5). It combines the poten-
tial for gain on f with the risk of choosing x̂?(p) far from
what the expert believes or the data considers to be sensible
constraints, while also making sure that we learn f from the
most relevant data points. As such, it provides an answer to
the challenge we posed above.

3.1 Empirical Analysis of Quality Estimate
To gauge the value of the probability of improvement (8) as
an assessment metric, we ran the following simulation. We
generated multiple triplets (f,D,Ω), where f is a contin-
uous piece-wise linear function, D is noisy data associated

7The two can be combined into r(Ω̂) = r1(Ω̂) · r2(Ω̂) ∈ [0, 1],
where r(Ω̂) = 1 iff Ω̂ = Conv (D) and r(Ω̂) = 0 iff Ω̂ ∩ D = ∅.

8One key advantage of GP models is their being model-free. By
contrast, a linear model (or any other parametric model) may very
well locate the optimal solution away from the data.



with f , and Ω are linear constraints sampled from a distri-
bution O (Davidovich 2021). All feature vectors in D were
considered decision variables.

We ran a simple two-stage prediction-optimization algo-
rithm and calculated the probability of improvement for its
proposed solution x̂? against policies x0 in the data. We de-
tail the synthetic data generation process for the analysis of
the quality estimate in Appendix ??.

For each generated triplet (f,D,Ω) with D = (X, y), we
trained a linear regression model on the feasible data points
(x, y) ∈ D with x ∈ Ω and fed the resulting model as the
linear objective target together with the sampled constraints
Ω to the PuLP solver (Mitchell, O’Sullivan, and Dunning
2011). The result was a solution x̂? ∈ Ω to the ersatz min-
imization problem (5). This predict-then-optimize scheme
is clearly inadequate. However, the purpose was not to pro-
duce a good algorithm, but rather to test the probability of
improvement both on good and bad proposed solutions.

To establish the GP posterior and calculate the probabil-
ity of improvement, we utilized the python package GPy
(GPy 2012), where we maximized the marginal likelihood
to establish the hyper-parameters of the GP kernel. Max-
imum likelihood (ML) is numerically sensitive to datasets
that produce a flat-ish landscape or a landscape with multiple
critical points. In such cases, optimization of the marginal
likelihood may fail. Triplets (f,D,Ω) for which ML failed
were removed. We note the option of using MCMC meth-
ods, though they impose considerable run-time costs on a
simulation at this scale.

Simulation results are summarized in Figure (1). We
randomly generated 1718 triplets (f,D,Ω) with domain
dom(f) ⊆ Rd for d = 2, 3. The generated PWL functions
f differed in complexity (e.g., number of simplices in T ),
while the data D varied in number of policies (2, 3, or 5)
and number of data points (500 or 1000).

Figure 1: Probability of improvement calculated for 5593
solution-policy pairs associated with 1718 randomly gener-
ated triplets (f,D,Ω).

Each data point in Figure (1) stems from a single triplet
(f,D,Ω) and corresponds to the probability of improvement
calculated for a pair (x̂?, x0), where x̂? is an estimated arg
min produced from (D,Ω) and x0 is a policy inD. Figure (1)
includes 5593 solution-policy pairs.9 The horizontal axis of
policies x0 in Figure (1) is normalized according to (f(x0)−
fmin)/(fmax−fmin) using the true known values of f ; fmin

(fmax) is the true known global minimum (maximum) of f
in dom(f). The vertical axis of solutions x̂? is normalized
mutatis mutandis.

We expect a strong assessment metric of data-driven op-
timization algorithms to show a light-to-dark color gradient
going from the top left corner of Figure 1 down to its bottom
right. Near the top left corner, solutions are valued close to
function maximum while policies are valued close to func-
tion minimum. The probability of improvement there should
near 0, as we are considering minimization. Near the bottom
right corner, the opposite holds; solutions are valued close to
function minimum while policies are valued close to func-
tion maximum. The probability of improvement should then
near 1.

There are two cases to consider where probability of im-
provement fails: false negatives and false positives. False
negatives are instances of pairs (x̂?, x0) for which the so-
lution resulted in an actual improvement, but the probability
of improvement estimate was below the threshold (which we
defined to be 0.5 in this analysis) . False negatives appear in
Figure (1) as light colored data points below the diagonal .
False negatives represent a missed opportunity for improve-
ment rather than a call to action. False positives, on the other
hand, are instances of pairs (x̂?, x0) for which the proba-
bility of improvement should have been below 0.5 but was
estimated to be above 0.5. We can see false positives in Fig-
ure (1) as dark colored data points above the diagonal. They
represent scenarios in which a change in policy will produce
worse outcomes, and thus are far less desirable than false
negatives.10

The results are summarized in Table (1). The bottom left
cell represents false negatives (9.2%), and the upper right
cell false positives (2.6%). As can be seen, the overall accu-
racy of the metric is quite high, and errors are biased strongly
towards the less important false negatives 11. Therefore, the
probability of improvement (8) demonstrates the character-
istics for a strong assessment metric of data-driven optimiza-
tion algorithms.

9To run our simulation at scale, we used the cloud distribu-
tion framework ray (Moritz et al. 2018) and the event management
framework rayvens built on top of ray (Gheorghe-Teodor Bercea,
Olivier Tardieu 2021). We ran our simulation on an OpenShift clus-
ter with 16 CPU x 64 RAM x 3 workers.

10The accumulation of data points at the bottom of Figure (1)
shows instances in which the predict-then-optimize algorithm was
successful at identifying the global minimum.

11Note that changing the threshold is expected to reduce even
further the number of false positives



f(x̂?) < f(x0) f(x̂?) > f(x0)

Predicted PI > 0.5 4201 146

Predicted PI < 0.5 513 733

Table 1: False negatives and false positives in probability of
improvement predicted vs. actual.

4 Obtaining Good Quality Solutions
4.1 Problem Augmentation with GPs
Assume all we have is data D.12 Is there a way for us to
augment the feasibility region Ω using D so as to ensure a
solution that meets our quality metric? To address this ques-
tion, consider GPf |D established on the entire dataset, with
its derived SD σGPf |D . Given κi ≥ 0, i = 1, 2, we consider
the following function defined on feasibility regions,13

sκ1,κ2
(Ω) = r1(Ω)−κ1r2(Ω)−κ2

1

|Ω|

∫
Ω

σGPf|D (x) dx

(13)
where r1 and r2 are as in (11) and (12) respectively.

The function sκ1,κ2
incorporates three terms. The first

term involving r1 penalizes Ω’s that contain too little of D.
The second term involving r2 penalizes Ω’s that encompass
too much data-less volume. The third term involving σGPf|D
is an estimate of expected model uncertainty in Ω.

Definition 1. A feasibility region Ω∗ is optimal w.r.t. GPf |D
and (κ1, κ2) if

sκ1,κ2(Ω∗) = min
Ω
sκ1,κ2 (14)

Optimizing the first and second terms of (13) helps ensure
that an optimal solution is located in a feasibility region with
sufficient historical data. Optimizing the third term helps en-
sure that an optimal solution is located in a feasibility region
with better model accuracy. Put together, they strike a bal-
ance between reducing error on the one hand and capturing
more data-populated feasible space on the other.

As an example, consider the noisy dataset in Figure (2a)
associated with the function y = x. The derived SD σGPf|D
is given in Figure (2b). In this 1-dimensional example, fea-
sibility regions are given by Ω = [x, y] ⊆ R. The resulting
function sκ1,κ2

:
{

(x, y) ∈ R2 |x < y
}
→ R is plotted in

Figure (3) for κ1 = 0.05 = κ2.
An important feature of sκ1,κ2

observed in Figure (3)
is the presence of a single local (as well as global) min-
imum, turning (14) into a convex optimization problem.
The global minimum in this example is achieved at Ω∗ =
[−0.475, 0.956], which is intuitive considering Figure (2b).

Further investigation of sκ1,κ2 (13) and the optimization
problem posed in (14) shows promise, though not without its

12As in Section 3.1, we will continue to assume all covariates
are decision variables.

13As in section 3, feasibility regions are defined via a finite set
of affine inequalities {gk(x) ≤ 0} with the number of inequalities
globally bounded from above.

(a) Noisy dataset for y = x.

(b) σGPf|D .

own challenges. Of primary concern is the choice of κ1 and
κ2. The first and second terms in (13) need to be balanced
against the third term with a suitable choice of κi. Other-
wise, the concern for data sufficiency may numerically over-
whelm the concern for model fidelity or vice versa. Never-
theless, solving the (possibly convex) optimization problem
in Definition 1, suggests a way to augment a predict-then-
optimize scheme by “learning” the optimal feasibility region
in tandem.

4.2 Iterative improvement approach
Our approach for Gaussian Process Based Problem Aug-
mentation encapsulates two concepts which could be ex-
tremely helpful in providing high quality solutions: Data
sufficiency, which means we should rely on the optimiza-
tion model only if the recommendations are close to re-
gions in which there is sufficient data, and model fidelity,
which means that the learnt optimization models are accu-
rate enough. As described, r1 and r2 address data fidelity,
and the integral represents data sufficiency.

In this section we therefore sketch an additional approach
for high quality solutions based on these concepts for cases
in which the assumptions required for the Gaussian Process
based augmentation do not hold. We do this by first explic-
itly defining regions of the problem in which both data suf-
ficiency and model fidelity hold.

To define such regions in the X ×P , we would need some
notion of “distance” between pairs of points from each of
X and P . In one setup, we can consider distance functions
dX : X × X → R+ and dP : P × P → R+ for X and
P respectively. These distances can be given (from domain
knowledge) or learned in some way. To define regions of



Figure 3: sκ1,κ2 , for κ1 = κ2 = 0.05

sufficient data and model fidelity, we have historical data D
in the form of tuples di = 〈xi, pi, zi〉 ∈ D such that xi ∈
X , pi ∈ P with xi ∈ Ω(pi), zi = f(xi, pi).

Given the notions of distance, thresholds δP > 0, δX > 0
and some historical dataD, we can define “close-by” uncon-
trollables pi for a given uncontrollable p ∈ P under consid-
eration (for which we are solving problem (1)) as

S(p) = {〈xi, pi, zi〉 ∈ D : dP (p, pi) ≤ δP }. (15)

Then for the current problem (1) with uncontrollable p, with
thresholds εS ∈ (0, 1), we consider a decision x ∈ X to be
in a “region of sufficient data” if

|Q(x, p|/|D| ≥ εS , where

Q(x, p) =
{
〈xi, pi, zi〉 ∈ S(p), dX(x, xi) ≤ δX

}
.

(16)

To define regions of sufficient model fidelity, we first have to
define some “models”. We first think of a regression model
f̂ : X × P → R, which could be possibly learned using ex-
amples of (x, p, z) tuples. Second, we can learn a classifier
ĝ : X ×P → [0, 1] that tries to map a (x, p) to I(x ∈ Ω(p))
where ĝ(x, p) ≈ Pr(x ∈ Ω(p)). Then for problem (1) with
current uncontrollable p, given the above models, and fi-
delity thresholds εfM > 0, εgM ∈ (0, 1), we consider a de-
cision x ∈ X to be in a “region of sufficient model fidelity”
with respect to f̂ and ĝ if

σ({|zi − f̂(xi, pi)| : (xi, pi, zi) ∈ Q(x, p)}) ≤ εfM ,
σ({1− ĝ(xi, pi) : (xi, pi, zi) ∈ Q(x, p)}) ≤ εgM ,

(17)

where σ({· · · }) is some aggregator over a set of scalars such
as mean, median, max (or some percentile in between). For
better generalizability, it would be better to determine the re-
gions for model fidelity with respect to some historical data
D which is not used for the learning of the models f̂ and ĝ.

Then the optimization problem for any given uncontrol-
lable p ∈ P we solve could be written as:

min
x∈X ,f̂ ,ĝ

f̂(x, p) s. t.


ĝ(x, p) ≥ 1− εC ,
Data sufficiency cst. (16),
Model fidelity cst. (17),

(18)

where εC ∈ (0, 1). Let x̂?(p) be a solution of such a problem
for a given uncontrollable p ∈ P .

Motivation for proposed constraints. For the current un-
controllable p under consideration, let S(p) be the set of
“nearby” uncontrollables in the historical data D as defined
in (15). Let X(p) defined as following be the set of “histori-
cal decisions for all nearby uncontrollables”:

X(p) = {xi : 〈xi, pi, zi) ∈ S(p)} . (19)

Assuming that X(p) ⊂ Ω(p), consider that we have a
surrogate f̂ : X × P → R for the true objective f : X × P .
Let us further make the following two assumptions:
(A1) High fidelity surrogate for nearby data.
∀(xi, pi, zi) ∈ S(p), such that xi ∈ X(p), we have
|zi − f̂(xi, pi)| ≤ εf .
(A2) Guidance from historical decisions. We assume that,
while the historical decisions are not optimal (i. e., xi 6=
x?(pi) for any (xi, pi, zi) ∈ D), nearby decisions provide
“guidance” by ensuring that the optimal decision x?(p) for
current uncontrollable p lies in the convex hull of these
nearby decisions, that is x?(p) ∈ Conv (X(p)).

Then our following result demonstrates how the afore-
mentioned data sufficiency (16) and model fidelity con-
straints (17) allow us to bound the optimality gap of the se-
lected decision (the proof is in Appendix ??):
Theorem 2 (Bounded optimality gap). Under the conditions
of problem (1), for any uncontrollable p ∈ P , assume that
A1 and A2 holds for some δP > 0 and εf > 0. Let the func-
tions f(x, ·) beLPf -Lipschitz and f̂(x, ·) beLP

f̂
-Lipschitz for

any x ∈ X . Also let the functions f(·, p) be LXf -Lipschitz

and f̂(·, p) be LX
f̂

-Lipschitz for the current p. Let x?(p) be
the optimal decision and x̂? be the decision selected using
the surrogate f̂ as

x̂? := arg min
x∈Conv(X(p))

f̂(x, p). (20)

Then, the gap between the objective for the selected deci-
sion x̂? and the optimal decision x?(p) is bounded as:

f(x̂?, p)− f(x?(p), p) ≤

2
(
δP

(
LPf + LP

f̂

)
+ εf +

(
LXf + LX

f̂

)
∆(p)

)
,

(21)

where ∆(p) := minxi∈X(p) maxxj∈X(p) ‖xi − xj‖2.
Our proposed model fidelity constraint (17) ensures A1,

and implies that a tighter model fidelity constraint (a smaller
εf ) ensures a smaller optimality gap bound in (21). A2
implies that historical decisions are somewhat informative
of optimal decisions for nearby uncontrollables. While this
may not be true in general, larger set of nearby uncontrol-
lables can make the convex hulls larger, boosting the chance
of including the optimal decision. Constraint (16) ensures
that we are in such regions, thereby promoting A2.

The bound (21) does highlight some intuitive tradeoffs in
this decision optimization problem. The term ∆(p) is re-
lated to the “nearness” threshold δX in (16), and smaller



Algorithm 1: Iterative meta-algorithm for uncontrollable p.

Input: Initial values for εS , ε
f
M , ε

g
M , εC > 0, change thresh-

old upper bound α.
Output: Decision x̂?

1: Initialize α←∞, ρold ← 0, ρbest ← 0.
2: while α ≤ α do
3: Solve (18) for current εS , ε

f
M , ε

g
M , εC to get x̂?(p).

4: Compute ρ as in (22) using the heldout set V .
5: α← |ρ− ρold|, ρold ← ρ.
6: if ρ > ρbest then
7: ρbest ← ρ.
8: end if
9: Increase values of εS , ε

f
M , ε

g
M , εC .

10: end while
11: return Decision x̂?(p) corresponding to ρbest.

δP and δX imply smaller optimality gap bound. However,
smaller values make the satisfaction of the data sufficiency
constraints (and hence A2) more challenging. We do not
control the Lipschitz constants LPf , L

X
f of the unknown ob-

jective f , but we can control the Lipschitz constants LP
f̂
, LX

f̂

of the surrogate f̂ . However, a surrogate with a small Lips-
chitz constant (such as a linear f̂ ) along with a small δP , δX
would probably not be able to satisfy the model fidelity con-
straint (17) as easily.

4.3 Estimating quality and iterative improvement
Consider a heldout set of historical data denoted by V . Using
the previously proposed probability of improvement based
quality estimate, we assess the quality of a particular solu-
tion technique that produces a decision x̂?(p) for any given
uncontrollable p as

ρ =
∑

(x,p,z)∈V

Pr (f(x̂?(p), p) < z) . (22)

Here ρ is an aggregation of the probability of improvements
over multiple instances of the problem (18) for different set-
tings of uncontrollables p such that (x, p, z) ∈ V .

Using the previously presented tools, we present an itera-
tive meta-algorithm with any solution technique for any un-
controllable p ∈ P in Algorithm 1. This meta-algorithm can
employ any scheme to solve multiple instances of (18) and
return the decision with the highest aggregated probability
of improvement on the heldout historical data.

5 Related Work
There are existing works on creating optimization models
from data. For example, Arcangioli, Bessiere, and Lazaar
(2016) and De Raedt, Passerini, and Teso (2018) focus on
learning constraints from data. In Lombardi, Milano, and
Bartolini (2017), a machine learning model of a complex
system is generated from data, and then transformed into an
optimization model. The work in Subramanian et al. (2019)
learns machine learning models for multiple components

of a complex industrial process, and incorporates knowl-
edge specification in the form of intermediate storage nodes,
from which a process-wide optimization model is generated.
However, while these works address automatic derivation of
optimization models, they do not address the resulting solu-
tion quality,.

Works such as Wilder, Dilkina, and Tambe (2019) and El-
machtoub and Grigas (2020) address the issue of integrating
machine learning and optimization models using decision-
focused learning. Indeed, the loss function for the machine
learning model is defined to account for the optimization ob-
jective. However, the problem addressed by these works are
significantly different than the problem described in Section
2: it assumes that the structure of the functions describing
the objectives and constraints are given, and that there is
uncertainty only regarding the covariates of the objective
function. Moreover, these works do not enable accounting
for the influence the decision variables have on the machine
learning models’ features, and therefore, do not attempt to
address historical decision data.

Another well known optimization approach is Reinforce-
ment Learning, or RL (Sutton and Barto 2018). which offers
some ideas that have direct relevance to this work: Thomas,
Theocharous, and Ghavamzadeh (2015) defines a problem
similar in spirit to Equation (3) in the sense that a policy
is sought that improves, with a high enough probability, the
objective as compared to the objective obtained by the pol-
icy used to generate the data used for RL. For offline RL, Yu
et al. (2020) learn an environment model is learned from his-
torical data, which is then used as input to the RL algorithm,
and the uncertainty of the environment model is explicitly
taken into account in the reward function. Much like offline
RL, we have historical data, and the uncontrollable p can be
thought of as state variables, and the decisions x as the ac-
tions. However, unlike offline RL, p is truly uncontrollable,
and our “action” at any state (current p) does not have any
control over the next state (or next p). Finally, in RL, we
seek to optimize for the cumulative reward over a sequence
of actions/decisions, while in our case, we seek an improved
decision (Equation (3)) for each state (uncontrollable p).

6 Summary and Future Work
In this paper we study the solution quality for the decision-
making problem when the optimization models are learnt
from historical data, addressing the challenging issue related
to the uncertainty of such machine learning models when
the data includes historical decisions. We provided a formal
definition of optimization solution quality and provided an
accurate estimate of the probability of improvement using
using Gaussian Processes. We also proposed an approach to
including additional constraints based on the notions of data
sufficiency and model fidelity in order to improve the solu-
tion quality. To the best of our knowledge, this is the first
work to quantify solution quality for such generated opti-
mization model with theoretical guarantee. For future work,
we intend to enhance the theoretical basis to address this
problem, implement an end-to-end framework ensuring the
solution quality, and validating it via numerical experiments.
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